152 research outputs found

    Nesting by dark-bibbed female Beautiful Long-tailed Sunbirds Cinnyris pulchellus and occurrence of dark both sexes of Beautiful Long-tailed and Gorgeous Sunbirds C. melanogastrus

    Get PDF
    Observations on nesting Beautiful Long-tailed Sunbirds Cinnyris pulchellus in The Gambia revealed that some females have dark or partially dark bibs, contrary to most accounts in the literature. Furthermore, all fledglings seen in The Gambia also had dark bibs and some males in eclipse plumage or lacking tail-streamers engaged in breeding activity. The conclusion that some adult female C. pulchellus have dark bibs and that some, probably all, juveniles have dark bibs was confirmed from museum specimens. It is further demonstrated, based on specimens, that some adult females and juveniles of Gorgeous Sunbird C. melanogastrus also have dark bibs

    Onchocerciasis transmission in Ghana: biting and parous rates of host-seeking sibling species of the Simulium damnosum complex

    Get PDF
    Background: Ghana is renowned for its sibling species diversity of the Simulium damnosum complex, vectors of Onchocerca volvulus. Detailed entomological knowledge becomes a priority as onchocerciasis control policy has shifted from morbidity reduction to elimination of infection. To date, understanding of transmission dynamics of O. volvulus has been mainly based on S. damnosum sensu stricto (s.s.) data. We aim to elucidate bionomic features of vector species of importance for onchocerciasis elimination efforts. Methods: We collected S. damnosum sensu lato from seven villages in four Ghanaian regions between 2009 and 2011, using standard vector collection, and human- and cattle-baited tents. Taxa were identified using morphological and molecular techniques. Monthly biting rates (MBR), parous rates and monthly parous biting rates (MPBR) are reported by locality, season, trapping method and hour of collection for each species. Results: S. damnosum s.s./S. sirbanum were collected at Asubende and Agborlekame, both savannah villages. A range of species was caught in the Volta region (forest-savannah mosaic) and Gyankobaa (forest), with S. squamosum or S. sanctipauli being the predominant species, respectively. In Bosomase (southern forest region) only S. sanctipauli was collected in the 2009 wet season, but in the 2010 dry season S. yahense was also caught. MBRs ranged from 714 bites/person/month at Agborlekame (100% S. damnosum s.s./S. sirbanum) to 8,586 bites/person/month at Pillar 83/Djodji (98.5% S. squamosum). MBRs were higher in the wet season. In contrast, parous rates were higher in the dry season (41.8% vs. 18.4%), resulting in higher MPBRs in the dry season. Daily host-seeking activity of S. damnosum s.s./S. sirbanum was bimodal, whilst S. squamosum and S. sanctipauli had unimodal afternoon peaks. Conclusions: The bionomic differences between sibling species of the S. damnosum complex need to be taken into account when designing entomological monitoring protocols for interventions and parameterising mathematical models for onchocerciasis control and elimination

    Induction of apoptosis in host cells: a survival mechanism for Leishmania parasites?

    Get PDF
    Leishmania parasites invade host macrophages, causing infections that are either limited to skin or spread to internal organs. In this study, 3 species causing cutaneous leishmaniasis, L. major, L. aethiopica and L. tropica, were tested for their ability to interfere with apoptosis in host macrophages in 2 different lines of human monocyte-derived macrophages (cell lines THP-1 and U937) and the results confirmed in peripheral blood mononuclear cells (PBMC). All 3 species induced early apoptosis 48 h after infection (expression of phosphatidyl serine on the outer membrane). There were significant increases in the percentage of apoptotic cells both for U937 and PBMC following infection with each of the 3 species. Early apoptotic events were confirmed by mitochondrial membrane permeabilization detection and caspase activation 48 and 72 h after infection. Moreover, the percentage of infected THP-1 and U937 macrophages increased significantly (up to 100%) following treatment with an apoptosis inducer. Since phosphatidyl serine externalization on apoptosing cells acts as a signal for engulfment by macrophages, induction of apoptosis in the parasitized cells could actively participate in spreading the infection. In summary, parasite-containing apoptotic bodies with intact membranes could be released and phagocytosed by uninfected macrophages

    Mosquito Magnet ® traps as a potential means of monitoring blackflies of medical and veterinary importance

    Get PDF
    Mosquito Magnet® traps, deployed in widespread parts of England as part of nationwide mosquito surveillance projects, also caught blackflies. As many as 1242 blackflies were caught in a trapping session lasting 4 days. Principal among the species caught were Simulium equinum, Simulium lineatum and Simulium ornatum s.l. As S. ornatum s.l. is a vector that transmits Onchocerca linealis to cattle and S. equinum is responsible for dermatitis ('sweet itch') in cattle and horses, it is suggested that Mosquito Magnet® traps could be used to monitor and partially control these pests, as well as nuisance anthropophilic blackflies such as Simulium posticatum that can cause simuliidosis in southern England

    Onchocerciasis transmission in Ghana: Persistence under different control strategies and the role of the simuliid vectors

    Get PDF
    Background: The World Health Organization (WHO) aims at eliminating onchocerciasis by 2020 in selected African countries. Current control focuses on community-directed treatment with ivermectin (CDTI). In Ghana, persistent transmission has been reported despite long-term control. We present spatial and temporal patterns of onchocerciasis transmission in relation to ivermectin treatment history. Methodology/Principal Findings: Host-seeking and ovipositing blackflies were collected from seven villages in four regions of Ghana with 3–24 years of CDTI at the time of sampling. A total of 16,443 flies was analysed for infection; 5,812 (35.3%) were dissected for parity (26.9% parous). Heads and thoraces of 12,196 flies were dissected for Onchocerca spp. and DNA from 11,122 abdomens was amplified using Onchocerca primers. A total of 463 larvae (0.03 larvae/fly) from 97 (0.6%) infected and 62 (0.4%) infective flies was recorded; 258 abdomens (2.3%) were positive for Onchocerca DNA. Infections (all were O. volvulus) were more likely to be detected in ovipositing flies. Transmission occurred, mostly in the wet season, at Gyankobaa and Bosomase, with transmission potentials of, respectively, 86 and 422 L3/person/month after 3 and 6 years of CDTI. The numbers of L3/1,000 parous flies at these villages were over 100times the WHO threshold of one L3/1,000 for transmission control. Vector species influenced transmission parameters. At Asubende, the number of L3/1,000 ovipositing flies (1.4, 95% CI = 0–4) also just exceeded the threshold despite extensive vector control and 24 years of ivermectin distribution, but there were no infective larvae in host-seeking flies. Conclusions/Significance: Despite repeated ivermectin treatment, evidence of O. volvulus transmission was documented in all seven villages and above the WHO threshold in two. Vector species influences transmission through biting and parous rates and vector competence, and should be included in transmission models. Oviposition traps could augment vector collector methods for monitoring and surveillance

    Potential effects of warmer worms and vectors on onchocerciasis transmission in West Africa

    Get PDF
    Development times of eggs, larvae and pupae of vectors of onchocerciasis (Simulium spp.) and of Onchocerca volvulus larvae within the adult females of the vectors decrease with increasing temperature. At and above 25C,the parasite could reach its infective stage in less than 7 days when vectors could transmit after only two gonotrophic cycles. After incorporating exponential functions for vector development into a novel blackfly population model, it was predicted that fly numbers in Liberia and Ghana would peak at air temperatures of 29C and 34C, about 3C and 7C above current monthly averages, respectively; parous rates of forest flies (Liberia) would peak at 298C and of savannah flies (Ghana) at 308C. Small temperature increases (less than 28C) might lead to changes in geographical distributions of different vector taxa. When the new model was linked to an existing framework for the population dynamics of onchocerciasis in humans and vectors, transmission rates and worm loads were projected to increase with temperature to at least 338C. By contrast, analyses of field data on forest flies in Liberia and savannah flies in Ghana, in relation to regional climate change predictions, suggested, on the basis of simple regressions, that 13–41% decreases in fly numbers would be expected between the present and before 2040. Further research is needed to reconcile these conflicting conclusions

    Modelling the impact of larviciding on the population dynamics and biting rates of Simulium damnosum (s.l.): implications for vector control as a complementary strategy for onchocerciasis elimination in Africa

    Get PDF
    Background: In 2012, the World Health Organization set goals for the elimination of onchocerciasis transmission by 2020 in selected African countries. Epidemiological data and mathematical modelling have indicated that elimination may not be achieved with annual ivermectin distribution in all endemic foci. Complementary and alternative treatment strategies (ATS), including vector control, will be necessary. Implementation of vector control will require that the ecology and population dynamics of Simulium damnosum sensu lato be carefully considered. Methods: We adapted our previous SIMuliid POPulation dynamics (SIMPOP) model to explore the impact of larvicidal insecticides on S. damnosum (s.l.) biting rates in different ecological contexts and to identify how frequently and for how long vector control should be continued to sustain substantive reductions in vector biting. SIMPOP was fitted to data from large-scale aerial larviciding trials in savannah sites (Ghana) and small-scale ground larviciding trials in forest areas (Cameroon). The model was validated against independent data from Burkina Faso/Côte d’Ivoire (savannah) and Bioko (forest). Scenario analysis explored the effects of ecological and programmatic factors such as pre-control daily biting rate (DBR) and larviciding scheme design on reductions and resurgences in biting rates. Results: The estimated efficacy of large-scale aerial larviciding in the savannah was greater than that of ground-based larviciding in the forest. Small changes in larvicidal efficacy can have large impacts on intervention success. At 93% larvicidal efficacy (a realistic value based on field trials), 10 consecutive weekly larvicidal treatments would reduce DBRs by 96% (e.g. from 400 to 16 bites/person/day). At 70% efficacy, and for 10 weekly applications, the DBR would decrease by 67% (e.g. from 400 to 132 bites/person/day). Larviciding is more likely to succeed in areas with lower water temperatures and where blackfly species have longer gonotrophic cycles. Conclusions: Focal vector control can reduce vector biting rates in settings where a high larvicidal efficacy can be achieved and an appropriate duration and frequency of larviciding can be ensured. Future work linking SIMPOP with onchocerciasis transmission models will permit evaluation of the impact of combined anti-vectorial and anti-parasitic interventions on accelerating elimination of the disease
    corecore